Binary Tree Longest Consecutive Sequence II
题目
Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree.
Especially, this path can be either increasing or decreasing. For example, [1,2,3,4] and [4,3,2,1] are both considered valid, but the path [1,2,4,3] is not valid. On the other hand, the path can be in the child-Parent-child order, where not necessarily be parent-child order.
Example 1:
Input:
1
/ \
2 3
Output:
2
Explanation:
The longest consecutive path is [1, 2] or [2, 1].
Example 2:
Input:
2
/ \
1 3
Output:
3
Explanation:
The longest consecutive path is [1, 2, 3] or [3, 2, 1].
Note:All the values of tree nodes are in the range of [-1e7, 1e7].
思路分析
这道题是Binary Tree Longest Consecutive Sequence的延伸,主要的思想是一样的,就是用DFS来实现,下面的注释的code就是被优化的地方
//Definition for a binary tree node.
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
class Solution {
public int longestConsecutive(TreeNode root) {
if (root == null) return 0;
int[] result = new int[1];
dfs(root, result);
return result[0];
}
public int[] dfs(TreeNode root, int[] result){
if (root == null) return new int[]{0, 0};
int[] left = dfs(root.left, result);
int[] right= dfs(root.right, result);
int increaseLcs=1, decreaseLcs=1;
if(root.left!=null && root.val+1 == root.left.val) left[0]++;
else left[0] = 1;
if(root.right!=null && root.val+1 == root.right.val) right[0]++;
else right[0] = 1;
if(root.left!=null && root.val-1 == root.left.val) left[1]++;
else left[1] = 1;
if(root.right!=null && root.val-1 == root.right.val) right[1]++;
else right[1] = 1;
increaseLcs = left[0] > right[0]? left[0] : right[0];
decreaseLcs = left[1] > right[1]? left[1] : right[1];
/*
int max1 = 0, max2 = 0;
if (root.left!=null && root.val+1 == root.left.val && root.right!=null && root.val-1 == root.right.val) {
max1 = left[0] + right[1] - 1;
}
if (root.left!=null && root.val-1 == root.left.val && root.right!=null && root.val+1 == root.right.val) {
max2 = left[1] + right[0] - 1;
}
int max3 = Math.max(Math.max(max1, max2), Math.max(increaseLcs, decreaseLcs));
*/ <<<<< 这一段被注释掉的代码可以被increaseLcs+decreaseLcs-1所代替
result[0] = Math.max(result[0], increaseLcs+decreaseLcs-1);
return new int[]{increaseLcs, decreaseLcs};
}
}